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The problem of determining the stresses in an infinite viscoelastic plate with 
a circular cavity surrounded by a zone of phase transformation increasing 

with time, is studied. The problem is reduced to a first order system of ordi- 
nary differential equations. It is well known that the time dependence of the 
inverse operator of the elastic problem arising, in particular, in problems 
in which the boundary conditions are formulated on moving boundaries (con- 
tact problems, determination of the stresses in burning cylinders, etc. ) ex - 

eludes, as a rule, the possibility of using the Volterra principle [l- 31. 
The present paper is concerned with the problem of determining the stresses 
in an infinite viscoelastic plate with a circular cavity of radius a, around 
which a region of phase transformation increasing with time is formed. The 

physical characteristics of the medium such as density, Young’s modulus, 

viscosity, etc. , vary at the phase boundary S (t) discontinuously. Paper [4], 

used the framework of the theory of elasticity to investigate the stresses cau - 
sed by changes in density during a phase transformation in a semiplane under 
the action of a thermal stamp, with the interphase boundary remaining statio- 

nary. 

We shall assume that the temperature field is axisymmetric , from which it follows 
that the phase boundary is circular. The law of its motion can be found by solving the 

corresponding Stefan problem [5]. 
We write the defining stress - strain relation in the form 

Using the Airy function and the equation of compatibility of deformations, we can 
obtain the analog of the Kolosov- Muskhelishvili [S] formulas 

1+v - - . 
u1 + iup’ = 7 {xcp (2, t) - zcp’ (2, t) -II (2’ t)} 

ull + aa, = 2Recp’ (z, t) 
u 2% - $1 + 2i$, = 2 (:q (2, t) + 9’ 0, t): 

Let the region a < r < S (t) be occupied by phase 1, and the region 00 > r > 
s (t) by phase 2. We supplement equations (1) with the boundary conditions 
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ff11(2f = - pr up = - pa, T=OO 

(Jr(l) - i(Je!O’= u,(S - i(l,e(2), T = s (t) 
&'(l) - iue’(l) f: _3+‘f2) - iu,‘(2), r z S (t) 

U,(l) - ia,fl) zzz 0, r=a 
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(2) 

The above conditions may correspond, e. g. to the problem of stability of an unsuppor - 
ted deep mine in frozen rock. Here we neglect the density changes, and the influence 

of the phase transformation of the interstitial water is reflected in such characteristics 

as Young’s modulus, viscosity, etc.. The upper index accompanying the variables in- 
dicates the zone (one of two) to which the quantity in question refers. 

Let us write the unknown functions ‘p (z, t) and ?I, (z, t) for each zone in terms of 
the following power series [?I : 

cp, (z, t) = (aa (t)z3 + a1 (Qz + a-, (WY 

ql (z, t) = (5, (t)z + b-, (@z-i + It-3 (t)ra’S) whes a f r < S (t) 
(3) 

‘pztz, t) = r z + * 

*2 (z, t) = I” {z + * + +g} 
when s(t)<r<w 

The constants l? and r’ are chosen in such a manner, that the boundary conditions 
at infinity are satisfied. Substituting the expansions (3) into the last three boundary 

conditions of (2) and comparing the coefficients of like powers of eie, we obtain the 
following set of equations determining the unknown functions appearing in (3): 

b-1 ft) 
2@1(9 + yp- =o, a~(t)u*-~_~(t)a~+b_~~t)=o* 

3a3 (t) a4 + a_l (t) + b, (t) a2 = 0 

m-1 (1) 
2r + Sz(t) 

b_,,(t) 
=2%(t) +- ptq 

(4) 

ra-1 (t) + UL (t) b-,(t) 
-s” s4 (t) 

= a3 (t) s2 (1) - -f#- + - 
s4 (t) 

ra-1 @I cl tt) 
-+I’==~,(tfS2(t)+ ,c,ytt) $-b,(t) s2tt1 

1 +v2 
Ez 1 Q-~ (2) f _ rpy 

s ($1 I = 

1 +v1 
{ 

a-1 @I b-3 (2) 
F ‘1 

Xl% @I s3 (0 + s - - sa (t) I 
In contrast with the corresponding elastic problem, the third condition of (2) yields 

three differential equations (last three equations of (4)). The argument T shows that 
the differential operators act only on the function containing this argument. The fact 
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that the differential equations in question contain the time-dependent cofactors accom- 
panying the unknown coefficients of the expansions, indicates that in the problem under 
consideration we cannot use just any viscoelastic analogy, and the system (4) must be 

solved indirectly, e. g. using the method of a small parameter, if the law governing the 
motion of the boundary has the form S (t) = S, f eh (t), e (( 1. 

As an example, we shall determine the coefficient Be1 (t), and we shall seek it in 
the form of the following series: 

k=o 

The first, fourth and seventh equation of (4) can be reduced to a single differential 
equation in p_r (t) _ 

q {(x2 - 1) s (t) r - r’g-1 (Z) 
s(t) = I (5) 

Ifv1 (%-1)x(t) 
{ 

us 2rSs(z) + r’g-, (z) _ 
E1 2 + S (t) 11 sa (z) - us 1 

In the zero approximation S (t) and S (z) in (5) are replaced by S,, and this corms - 
ponds to the viscoelastic problem with a stationary boundary, a solution of which can 
be obtained with the help of the principle of correspondence. 

The formulation given above can be generalized to the case of discontinuous den- 
sity change, by replacing the third condition in (2) by 

UT ‘(l) -- u;(~) Ir_s(t) = kS’ (t), 
k = P2 - Pl - 

Pl 

where k is the relative volume change and pl, pa are the phase densities. 
We note that if the defining stress- deformation equations have the form 

u = f (e, e’, e”, . . .) (6) 

then the construction of the Kolosov- Muskhelishvili formulas in terms of the Airy 
function for the region a < r < S (t) may encounter some difficulties when s (t) 

increases monotonously. Another method of constructing the Kolosov - Muskhelishvili 
formulas is given in the literature. It consists of direct transformation of the equilib - 

rium equations written in terms of the displacements [8]. This method makes possible 
the direct utilization of Eqs. (6) but yields, for the displacement vector, an expression 
of the form 

2G (ur + iu,) = xcp (z, t) -z(P~) - $ (z, t) 

To determine the displacement from the above equation we must again perform integra- 
tion with respect to time. At the same time, use of (1) instead of (6) leads to relati - 
vely simple expressions. 
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